0040-4039(95)02187-6

Stereoselective Synthesis of 2,5-Disubstituted Tetrahydrofurans by Silicon-Directed Cyclization of Vinylsilanes Bearing a Hydroxy Group¹

Katsukiyo Miura, Takeshi Hondo, Shigeo Okajima, and Akira Hosomi*

Department of Chemistry, University of Tsukuba, Tsukuba, Ibaraki 305, Japan

Abstract: In the presence of a catalytic amount of p-toluenesulfonic acid (TsOH) or TiCl₄, (Z)-1-substituted-5-silyl-4-penten-1-ols can be easily transformed into 2,5-disubstituted tetrahydrofurans with high trans-selectivities.

Recently, much attention has been paid to the stereoselective synthesis of substituted oxygen-containing heterocycles since tetrahydrofuran and tetrahydropyran units are frequently found in polyether antibiotics and other biologically active natural products.² Cyclization of 4- or 5-alkenyl alcohols is one of the most straightforward routes to these heterocycle skeletons. It is well established that the reaction is promoted by an acid or an electrophile.³ Acid-catalyzed cyclization requires vigorous conditions, and the yields are generally low. In contrast, electrophile-initiated reaction is a powerful method for the synthesis of highly functionalized heterocycles. This method, however, has some drawbacks in efficiency and selectivity. There is still a need for a new method for preparation of oxygen-containing heterocycles from alkenyl alcohols.

We have previously reported that vinylsilanes bearing a hydroxy group could be cyclized to 2-silylmethyl-substituted cyclic ethers by the aid of TsOH or TiCl₄.⁴ In particular, this silicon-directed reaction is efficient for the construction of a tetrahydrofuran ring. Therefore, we next directed our efforts to the stereoselective synthesis of disubstituted tetrahydrofurans, and herein report the results on the acid-catalyzed cyclization of (Z)-1-substituted-5-silyl-4-penten-1-ols (1).⁵ (eq. 1)

$$R^{1} \xrightarrow{\text{SiMe}_{2}R^{2}} \frac{\text{TsOH or TiCl}_{(5 \text{ mol}\%)}}{\text{CHCl}_{3}} \qquad R^{1} \text{SiMe}_{2}R^{2} + R^{1} \xrightarrow{\text{Cis-2a-j}} \text{SiMe}_{2}R^{2} \quad (1)$$

Treatment of (Z)-1-phenyl-5-trimethylsilyl-4-penten-1-ol (1a; R¹=Ph, R²=Me) with a catalytic amount of TsOH at 60 °C gave tetrahydrofuran 2a in 90% yield with a *trans*-selectivity as shown in entry 1 of Table 1. The prolonged reaction time caused the isomerization of *trans*-2a to *cis*-2a, which, however, it did not occur when the substrate was present in the reaction mixture. The cyclization at room temperature, which was much slower than that at 60 °C, slightly improved the stereoselectivity. On the other hand, TiCl₄-catalyzed cyclization of 1a smoothly proceeded even at room temperature, giving an 86:14 mixture of *trans*-2a and *cis*-2a in 88% yield. E-isomer of 1a was also cyclized to 2a in a good yield, but with low reactivity and selectivity.

Table 2 delineated the scope of the cyclization of vinylsilanes 1. In all entries, the reactions induced by TiCl₄ at room temperature exhibited higher *trans*-selectivity than those induced by TsOH at 60°C as described

above. The selectivity is also affected by substituents R^1 and R^2 . The use of a hexyl group as R^1 , which is less bulky than the phenyl and isopropyl groups, reduced the ratios of *trans-2* to *cis-2*, while the ratios are independent of the bulkiness of R^2 . The change of the methyl group to a *tert*-butyl group in R^2 was not effective to improve the *trans*-selectivity although the cyclization of 1d was markedly accelerated.⁶ Vinylsilanes 1e-g bearing a phenyl group as R^2 could be cyclized in higher selectivities. When R^2 =H, the best results were obtained in stereoselectivity. Unfortunately, the yields decreased to some extent because of desilylation of the substrates 1h-j and cleavage of the Si-H bond of the products 2h-j.

Table 1. Acid-catalyzed Cyclization of (Z)- and (E)-1-Phenyl-5-trimethylsilyl-4-penten-1-ol (1a)

Entry	Substrate	Catalyst	Temp / °C	Time / h	Yield / %	trans / cis b
1	la	TsOH	60	7	90	83 / 17
2	1a	TsOH	60	16	90	78 / 22
3	1a	TsOH	60	2	77	83 / 17
4	1a	TsOH	rt	114	84	85 / 15
5	1a	TiCl ₄	rt	7	88	86 / 14
6	(E)-1a	TsOH	60	16	90	60 / 40
7	(E)-1a	TiCl ₄	nt	25	82	66 / 34

^aA mixture of substrate (1.0 mmol) and a catalyst (0.05 mmol) in CHCl₃ (5 ml) was employed. ^bThe ratios were determined by ¹H NMR analysis.

Table 2. Cyclization of (Z)-1-Substituted-5-silyl-4-penten-1-ols (1)^a

Entry	Substrate		TsOH / 60 °C			TiCl ₄ / rt			
	R ¹	R ²		Time / h	Yield / %	trans / cis ^b	Time / h	Yield / %	trans / cisb
1	Ph	Me	(1a)	7	90	83 / 17	7	88	86 / 14
2	C ₆ H ₁₃	Me	(1b)	8	93	81 / 19	7	86	82 / 18
3	i-Pr	Me	(1c)	7	89	85 / 15	7	73	87 / 13
4	i-Pr	t-Bu	(1d)	2	93	83 / 17	0.3	98	88 / 12
5	Ph	Ph	(1e)	8	92	83 / 17	7	89	90 / 10
6	C ₆ H ₁₃	Ph	(1 f)	7	95	83 / 17	7	89	86 / 14
7	i-Pr	Ph	(1g)	6	95	89/11	6	92	92/8
8	Ph	Н	(1h)	9	76	90 / 10	7	84	96/4
9	C ₆ H ₁₃	Н	(1i)	6	66	89 / 11	7	82	91/9
10	i-Pr	Н	(1j)	11	66	91/9	7	68	93 / 7

a,bSee Table 1.

In order to determine the stereochemistry of the products, we performed the derivatization of tetrahydrofurans 2h-j with retention of the stereochemistry. (eq. 2 and Table 3) The hydrodimethylsilyl group of 2h-j could be easily converted to the hydroxy group by the treatment of H₂O₂ and KHCO₃. Tosylation of the resultant alcohols 3 followed by substitution with NaI gave iodides 4 in good yields with the same isomeric ratios as those of the starting materials. Bartlett et al. have shown that the use of 4-alkenyl alcohols 5 leads to 4 with moderate trans-selectivity, while iodocyclization of 4-alkenyl 2,6-dichlorobenzyl ethers 6 gives cis-4 exclusively. (eq. 3) The major isomers of iodides 4 prepared from tetrahydrofurans 2h-j were consistent with those from alcohols 5. In addition, hydrodeiodination of the iodide derived from 2h with Bu₃SnH gave *trans*-2-phenyl-5-methyltetrahydrofuran as a major product, whose ¹H NMR data have been reported.⁹ Therefore, we concluded that the major isomers of tetrahydrofurans 2h-j had *trans*-geometry. The stereochemical assignments of the other tetrahydrofurans 2a-g rest on analogy with 2h-j in ¹H NMR spectra.

Table 3. Derivatization of 2h-i and Iodocyclization of 5 and 6

R ¹	trans / cisª	Yield / % (trans / cis) ^a					
	of 2h-j	3	4 from 3	4 from 5	4 from 6		
Ph	96 / 4	93 (96 / 4)	89 (96 / 4)	61 (74 / 26)	56 (5 / 95)		
C_6H_{13}	86 / 14	85 (-) ^b	79 (87 / 13)	68 (69 / 31)	83 (<5 / 95)		
i-Pr	93 / 7	83 (-) ^b	82 (93 / 7)	88 (80 / 20) ^c	95 (5 / 95) ^c		

The ratios were determined by ¹H NMR analysis. ^bThe ratio could not be determined. ^cLiterature values. ⁸

As shown in Table 3, the present acid-catalyzed cyclization exhibited higher *trans*-selectivity than iodocyclization of 5. The following mechanism for the cyclization of 1 is possibly suggested (Scheme 1)⁴: (1) the coordination of the hydroxy group to a proton or TiCl₄ forms oxonium ion 7, (2) the proton on the oxygen of 7 shifts to the carbon adjacent to silicon, (3) the resultant β -silyl carbenium ion 8 rapidly turns into its rotamer 9 stabilized by σ - π conjugation, ¹¹ (4) attack of the oxygen atom to the β -silyl carbenium ion center from the side opposite to the silyl group gives 2,5-disubstituted tetrahydrofuran 2 to regenerate a proton or TiCl₄. In the TsOH-catalyzed cyclization, intermolecular protonation of 1, which affords 8 directly, may be a possible (step (2)).

In the cyclization of (E)- and (Z)-5-deuterio-5-phenyldimethylsilyl-4-penten-1-ol, we have found that addition of a hydroxy group to a carbon-carbon double bond proceeds in syn fashion predominantly.⁴ This result supports the finding that proton transfer (step (2) or (2)) and nucleophilic attack of oxygen (step (4)) take place on the same side of π -face as shown in Scheme 1. Accordingly, the stereochemistry of products would mainly depend on the diastereoface-selection of the proton transfer. In other words, the observed high trans-selectivity can be attributed to the diastereoface-selective protonation. Considering the fact that the reaction site is away from the stereogenic center, it is difficult to explain the face-selective protonation on the basis of an intermolecular path in step (2). In contrast, an intramolecular path in step (2) can easily rationalize the protonation affording the products with trans-selectivity.

In step (2), two transition states arising from chair-like conformers A and B are possible.¹² B has a repulsive non-bonding interaction between R¹ and the silyl group, which makes B an energetically unfavorable conformer. Thus, proton transfer proceeds *via* conformer A exclusively. The subsequent nucleophilic attack of oxygen occurs on the same side that the proton attacks, giving *trans*-isomer selectively. In the cyclization of (E)-1, the corresponding conformers C and D leading to transition states of proton

transfer can be also employed. However, the energy difference between these conformers is smaller than that between A and B, because D does not have such a severe steric repulsion as B has. This is the reason that the cyclization of (E)-la results in a low trans-selectivity.

$$1 + L$$

$$L = H^+ \text{ or TiCL}_4$$

$$Si = \text{SiMe}_2 R^2$$

$$R^1$$

$$O = H^+$$

$$Si = \text{SiMe}_2 R^2$$

$$H = H^+$$

$$A = B$$

$$C = D$$

In conclusion, the acid-catalyzed cyclization of vinylsilanes 1 is an efficient method for the synthesis of trans-2,5-disubstituted tetrahydrofurans. We are studying the further application of this silicon-directed reaction for the synthesis of polyfunctionalized tetrahydrofurans, and the results will be reported in due course.

Acknowledgments: Financial support for our work is provided by Grants-in-Aid for Scientific Research on Priority Areas from the Ministry of Education, Japan. We thank Dow Corning Toray Silicone Co. Ltd., Chisso Co. Ltd., and Shin-Etsu Chemical Co. Ltd. for gifts of organosilicon compounds.

References and Notes

- 1. Organosilicon Chemistry No. 131.
- 2. Reviews: (a) Kotsuki, H. Synlett, 1992, 97-106. (b) Kotsuki, H. J. Synth. Org. Chem., Jpn. 1990, 48, 612-626. (c) Boivin T. L. B. Tetrahedron 1987, 43, 3309-3362.
- (a) Larock, R. C.; Leong, W. W. In Comprehensive Organic Synthesis; Trost, B. M. Ed.; Pergamon Press: Oxford, 1991; Vol. 4, pp. 307-309. (b) Harding, K. E.; Tiner, T. H. ibid. 1991; Vol. 4, pp. 363-421 and references cited therein.
- 4. Miura, K; Okajima, S.; Hondo, T.; Hosomi, A. Tetrahedron Lett., 1995, 36, 1483-1486.
- 5. These substrates are easily available from 4-pentyn-1-ol in 5 steps.
- 6. The origin of the rate acceleration is not clear; however, it can be attributed to a severe steric strain between the hydroxyalkyl and r-BuMe₂Si groups. The release of the strain facilitates proton transfer, step (2) shown in Scheme 1, to accelerate the cyclization.
- 7. Tamao, K.; Yamauchi, T.; Ito, Y. Chem. Lett. 1987, 171-174.
- 8. Rychnovsky, S. D.; Bartlett, P. A. J. Am. Chem. Soc. 1981, 103, 3963-3964.
- 9. Dana, G.; Girault, J. P. Bull. Soc. Chim. Fr. 1972, 1650-1656.
- McCormick, M.; Monahan III, R.; Soria, J.; Goldsmith, D.; Liotta, D. J. Org. Chem. 1989, 54, 4485-4487.
- 11. For applications of allylsilanes to organic synthesis using the stabilization of β -silyl carbenium ion by σ - π conjugation, see Hosomi, A. Acc. Chem. Res. 1988, 21, 200-206 and references cited therein.
- 12 Transition states arising from boat-like conformers are strictly inhibited by a 1,3-allylic strain between the hydroxyalkyl and silyl groups.